Spatially Adaptive Techniques for Level Set Methods and Incompressible Flow

نویسندگان

  • Frank Losasso
  • Ronald Fedkiw
چکیده

Since the seminal work of [92] on coupling the level set method of [69] to the equations for two-phase incompressible flow, there has been a great deal of interest in this area. That work demonstrated the most powerful aspects of the level set method, i.e. automatic handling of topological changes such as merging and pinching, as well as robust geometric information such as normals and curvature. Interestingly, this work also demonstrated the largest weakness of the level set method, i.e. mass or information loss characteristic of most Eulerian capturing techniques. In fact, [92] introduced a partial differential equation for battling this weakness, without which their work would not have been possible. In this paper, we discuss both historical and most recent works focused on improving the computational accuracy of the level set method focusing in part on applications related to incompressible flow due to both its popularity and stringent accuracy requirements. Thus, we discuss higher order accurate numerical methods such as Hamilton-Jacobi WENO [46], methods for maintaining a signed distance function, hybrid methods such as the particle level set method [27] and the coupled level set volume of fluid method [91], and adaptive gridding techniques such as the octree approach to free surface flows proposed in [56]. ∗Research supported in part by an ONR YIP award and a PECASE award (ONR N00014-01-1-0620), a Packard Foundation Fellowship, a Sloan Research Fellowship, ONR N00014-97-1-0027, ONR N00014-03-1-0071, ONR N00014-02-1-0720, ARO DAAD19-031-0331, NSF DMS-0106694, NSF ITR-0121288, NSF IIS-0326388, NSF ACI-0323866, NSF ITR-0205671 and NIH U54 RR021813. †Computer Science Department, Stanford University, Stanford, CA 94305. ‡Department of Mathematics, University of California Los Angeles, Los Angeles, CA

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pressure-Velocity Coupled Finite Volume Solution of Steady Incompressible Invscid Flow Using Artificial Compressibility Technique

Application of the computer simulation for solving the incompressible flow problems motivates developing efficient and accurate numerical models. The set of Inviscid Incompressible Euler equations can be applied for wide range of engineering applications. For the steady state problems, the equation of continuity can be simultaneously solved with the equations of motion in a coupled manner using...

متن کامل

Multi-Phase Flow Computation with Semi-Lagrangian Level Set Method on Adaptive Cartesian Grids

The level set method, introduced by Osher and Sethian in 1988, is a powerful numerical approach for computing multi-phase flow problems. In 1994, Sussman, et al employed the level set approach to solve 2D incompressible two-phase flow problems. This approach was improved again by Sussman, et al in 1998. These methods are accurate but designed for structured uniform meshes only. In this paper, a...

متن کامل

Numerical simulations of free surface flows on adaptive cartesian grids

The paper studies a method for numerical simulation of free surface flows of viscous incompressible fluids. The approach is based on the level set method for capturing free surface evolution and features compact finite difference approximations of fluid and level set equations on locally refined and dynamically adapted octree cartesian grids. We consider in detail an extension of staggered grid...

متن کامل

A sharp interface method for incompressible two-phase flows

We present a sharp interface method for computing incompressible immiscible two-phase flows. It couples the Level-Set and Volume-of-Fluid techniques and retains their advantages while overcoming their weaknesses. It is stable and robust even for large density and viscosity ratios on the order of 1000 to 1. The numerical method is an extension of the second-order method presented by Sussman (200...

متن کامل

Segregated Runge-Kutta methods for the incompressible Navier-Stokes equations

In this work, we propose Runge-Kutta time integration schemes for the incompressible Navier-Stokes equations with two salient properties. First, velocity and pressure computations are segregated at the time integration level, without the need to perform additional fractional step techniques that spoil high orders of accuracy. Second, the proposed methods keep the same order of accuracy for both...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005